E&ES 326/328 Remote Sensing and Laboratory
Spring 2009
T/Th 10:30 – 11:50 AM, Exley 309, T 1:10 – 4:00 Science Cent. 74

Prof. Martha S. Gilmore
Office: Science Cent. 429 x3129 mgilmore@wesleyan.edu
Office Hours by appt.

TA: Tristan Kading Office: SC 413 tkading@wesleyan.edu

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/22</td>
<td>Introduction, Electromagnetic Radiation</td>
<td>Ch. 1, 2</td>
</tr>
<tr>
<td>1/27</td>
<td>Electromagnetic Radiation</td>
<td>Ch. 2</td>
</tr>
<tr>
<td>1/27</td>
<td>1. Introduction to UNIX and ENVI</td>
<td>Ch. 5</td>
</tr>
<tr>
<td>1/29</td>
<td>Aerial Photography</td>
<td>Ch. 3, 4</td>
</tr>
<tr>
<td>2/3</td>
<td>Cameras and Films, Photogrammetry</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td>2. Photointepretation</td>
<td>Ch. 14</td>
</tr>
<tr>
<td>2/5</td>
<td>Introduction to Multispectral Systems</td>
<td>Ch. 7</td>
</tr>
<tr>
<td>2/10</td>
<td>Remote Sensing of Vegetation</td>
<td>Ch. 11</td>
</tr>
<tr>
<td>2/10</td>
<td>3. Photogrammetry</td>
<td>Ch. 6</td>
</tr>
<tr>
<td>2/12</td>
<td>Remote Sensing of Vegetation</td>
<td></td>
</tr>
<tr>
<td>2/17</td>
<td>Physics of Spectral Reflectance</td>
<td></td>
</tr>
<tr>
<td>2/17</td>
<td>4. Landsat • Examination of Vegetation</td>
<td></td>
</tr>
<tr>
<td>2/19</td>
<td>Physics of Spectral Reflectance</td>
<td></td>
</tr>
<tr>
<td>2/24</td>
<td>VEXAG – No class</td>
<td></td>
</tr>
<tr>
<td>2/24</td>
<td>5. Mineral Reflectance</td>
<td>Ch. 15</td>
</tr>
<tr>
<td>2/26</td>
<td>VEXAG – No class</td>
<td></td>
</tr>
<tr>
<td>3/3</td>
<td>Hyperspectral Images</td>
<td></td>
</tr>
<tr>
<td>3/3</td>
<td>6. AVIRIS • Examination of Deserts</td>
<td></td>
</tr>
<tr>
<td>3/5</td>
<td>Test 1</td>
<td></td>
</tr>
<tr>
<td>3/19–20</td>
<td>SPRING BREAK</td>
<td></td>
</tr>
<tr>
<td>3/24</td>
<td>LPSC Project Introduction (webcam/ assignment?)</td>
<td></td>
</tr>
<tr>
<td>3/24</td>
<td>LPSC 9. Image processing and classification</td>
<td></td>
</tr>
<tr>
<td>3/26</td>
<td>LPSC Image processing and classification</td>
<td></td>
</tr>
<tr>
<td>3/31</td>
<td>Thermal Remote Sensing</td>
<td>Project Topics Due! Ch. 8</td>
</tr>
<tr>
<td>3/31</td>
<td>7. Thermal remote sensing (add more Mars)</td>
<td></td>
</tr>
<tr>
<td>4/2</td>
<td>Thermal Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>4/7</td>
<td>Radar</td>
<td>Ch. 9</td>
</tr>
<tr>
<td>4/7</td>
<td>8. Radar images of Earth and Venus</td>
<td></td>
</tr>
<tr>
<td>4/9</td>
<td>Radar</td>
<td></td>
</tr>
</tbody>
</table>

2/19/09
Class Policies

Attendance is expected. You will be tested primarily on the lectures. Late assignments will be penalized.

Grading will be on a 10 point scale: 90-100 = A, 80-90 = B, etc.

Your final grade for E&ES 326 will be calculated thusly:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>20%</td>
</tr>
<tr>
<td>Test 2</td>
<td>20%</td>
</tr>
<tr>
<td>Project</td>
<td>30%</td>
</tr>
<tr>
<td>Labs</td>
<td>25%</td>
</tr>
<tr>
<td>Class participation</td>
<td>5%</td>
</tr>
</tbody>
</table>

The final grade for E&ES 328 will consist of your laboratory write-ups. Labs are due one week from when they are assigned.

The Project

You will select a collaborative project using remote sensing data sets. Details will be given in class.

Course website http://www.wesleyan.edu/planetary