Problem Set 9

1. *HouseBuying.* First, recall that for any good \(x \) for which a consumer has endowment \(\omega_x \), the Slutsky equation can be written

\[
\frac{\partial x}{\partial p_x} = \frac{dx^s}{dp_x} + (\omega_x - x^*) \frac{\partial x}{\partial m}
\]

Suppose you want to use the Slutsky equation to examine the effect of a housing price increase on two types of households who buy new houses. In this problem, houses are measured in units of \(h \), where a higher \(h \) signifies a bigger, fancier, better-located house and lower \(h \) signifies a smaller, simpler, worse-located house. House prices are quoted in \(p_h \) per unit of \(h \).

(a) A move-up household owns (is endowed with) a house of type \(\omega_h \) and buys a bigger house of type \(h^* > \omega_h \). Write the Slutsky equation for the move-up household. Discuss the sign of each term.

(b) Draw an indifference curve/budget line diagram of the move-up household showing the endowment point, the initial purchase point \(h^* \), and the effect of an increase in house prices \(p_h \). Label the substitution and income effects.

(c) Now consider an older couple who want to downsize. They are endowed with a house of type \(\omega_h' \) and want to buy a smaller house of type \(h^* < \omega_h' \). Use the Slutsky equation to determine how a house-price increase would affect the size of the downsizing couple's new house. (Remember that even though they want a smaller house, \(h \) also measures the fanciness of the house so larger \(h \) is still a good thing for them all other things equal.)
(d) Actually, you decide that all of the above calculations are making your study very complicated. What you would like to do is just insert a sentence saying “In this study we ignore income effects,” and then just continue with a simpler analysis. Based on the Slutsky equation, what are three characteristics of the households’ demands that would help justify ignoring income effects? Make sure to explain each intuitively, not just mathematically.

2. *SubsInc.* First, recall that for any good \(x \) for which a consumer has endowment \(\omega_x \), the Slutsky equation can be written

\[
\frac{\partial x}{\partial p_x} = \frac{dx^s}{dp_x} + (\omega_x - x^*) \frac{\partial x}{\partial m}
\]

(If there is no endowment, just set the \(\omega_x \) to 0.)

Suppose you have a demand curve

\[
z(p, m) = 0.05mp^{-2}
\]

(a) What is the price elasticity of demand and income elasticity of demand for this demand function? Is \(z \) a normal good or an inferior good?

(b) If you start with income \(m = 100 \) and price \(p = 1 \), and no endowment, how large are the substitution and income effects of a price increase?

(c) Oh, it turns out there is an endowment, \(\omega_z = 4 \). True or false: this may reverse the sign of the full income effect you found in (b) and perhaps even make the slope of Marshallian demand for this good bend backward at some price levels. (You can calculate the actual numerical size of the effects if you want, but all that is necessary is the intuition for why the statement is true or false.)
3. **Meat-packing.** Let the demand in a city for meat be

\[Q = 24 - 4\sqrt{p} \]

There are 6 meat-packing plants, each with production function

\[f(L) = L^{2/3} \]

where \(L \) is the number of hours that meat-packers are employed. The wage for meat-packers is \(w = 3 \) never changes in this problem.

(a) Suppose all 6 meat packing plants are separately owned, and therefore we will treat them as perfect competitors. What is an individual firm’s supply curve and the market supply curve?

(b) How many hours of meat-packing work will there be in market equilibrium?

(c) Now suppose all six plants are purchased by one company which operates them as a monopoly, allocating 1/6 of its total production \(Q \) to each plant. What is this monopoly’s MC curve?

4. **Unionize.** Widget producers have conditional factor demand for labor \(L_D = y^2 \). Labor supply is \(L_S = w \) where \(w \) is the wage (i.e. an upward-sloping 45-degree line). Inverse demand for widgets is given by \(p = 5 - y \).

(a) Suppose there is perfect competition in the widget market and in the labor market. Find the goods market equilibrium, and then find and graph the labor market equilibrium.

(b) Suppose there is a monopoly in the widget market and perfect competition in the labor market. Find the goods market equilibrium, and then find and graph the labor market equilibrium.

(c) Suppose there is perfect competition in the widget market and monopoly in the labor market (i.e. there is a union). Find
the goods market equilibrium and then find and graph the labor market equilibrium showing labor demand, labor supply, and marginal revenue of the union.

Review problems only, not to turn in:

5. Aisha. Aisha runs a one-person, ten-cow dairy operation which produces 600 gallons of milk a week. This is her sole source of income. The price of milk is p_g, and Aisha’s utility function is

$$U(x, g) = 60x^2g^4$$

where x = numeraire and g = gallons of milk.

(a) What is Aisha’s demand function for milk?
(b) Show whether milk is a normal or an inferior good.
(c) The price of milk is $4 per gallon. How many gallons of milk does Aisha consume? How much numeraire?
(d) All the dairies except Aisha’s are hit by a tornado, wiping out many cows and causing the price of milk to rise. Break down the corresponding change in Aisha’s consumption of milk between the substitution, ordinary income, and endowment income effects.

6. Nurses. Your state is experiencing a nursing shortage and you, as the state nursing czar, are supposed to figure out how to fix the problem. You don’t know the specific function, but you know the labor supply of a typical nurse must be some $L^*(w, m)$, and thus the leisure demand function is $R(w, m)$, where w is the wage and m is the “full income.” There is no non-labor income.

Nurses cannot supply more than 10 hours of labor per day due to strict regulation in your state, so the endowment of leisure must be $\bar{R} = 10$. Currently the wage is 20, and currently nurses take R^* hours of leisure and C^* worth of consumption.
(a) Suppose you recommended subsidies that raised the wage to 25. What would be the Marshallian demand for leisure at this new wage? What would be the Slutsky compensated demand for leisure at this new wage?

(b) Will the nurses definitely work more hours at the new wage? Why or why not?

(c) Another option would be to give the nurses a lump sum bonus of $75 per day. What would be the Marshallian and Slutsky compensated demands for leisure under this option?

(d) Would this work better or worse than the wage increase at alleviating the nursing shortage?

7. Relax. The demand for relaxation is

\[R(w, p, m) = \frac{1}{4} m + p + \frac{1}{w} \]

\(w \) is the wage. \(p \) is the price of consumption. There are 16 total hours available, and nonlabor income is 12, so total income is \(m = 16w + 12 \).

(a) What is the labor supply curve? Is it backward-bending?

(b) Denoting \((C^*, R^*)\) as the initial consumption bundle, write the Slutsky equation for relaxation.

(c) Evaluate the Slutsky equation at \(p = 1, w = 0.6 \).

(d) With reference to the income and substitution effects, explain why labor supply curves often bend backward.
Answer to Review Problems:

5. Aisha_a.

(a) Since the utility function is Cobb-Douglas, we know that the demand function will take the form \(g(p_g, m) = \frac{2}{3} \frac{m}{p_g} \) where \(m \) is the full income.

Note that the Cobb-Douglas form means that Aisha always spends \(\frac{2}{3} \) of her income on milk.

In this case, \(m = 600p_g \), so \(g(p_g, 600p_g) = \frac{2}{3} \times 600 = 400 \).

Since Aisha’s income depends only on the price of milk, it turns out that her milk consumption is constant. This unusual result occurs because the endowment income effect will completely cancel the ordinary income and substitution effects. It would not occur if, for example, Aisha had an endowment of \(x \) as well.

(b) Demand for a normal good increases when income increases. Here,

\[
\frac{\partial g}{\partial m} = \frac{2}{3p_g} > 0
\]

so milk is normal. Note that what we want here is the slope of the Engel curve, which is a partial derivative in which \(m \) increases but \(p_g \) stays constant.

(c) We already saw that \(g(p_g, 600p_g) = 400 \) for any \(p_g \). If \(p_g = 4 \), \(m = 600 \times 4 = 2400 \). We know that Aisha always spends \(\frac{2}{3} \) of her income on milk and \(\frac{1}{3} \) on other goods, so \(2400 \times \frac{3}{8} = 800 \) is the amount spent on \(x \). And since \(p_x = 1 \), \(x = 800 \).

(d) The derivative of Slutsky compensated demand is

\[
\frac{\partial g^s}{\partial p_g} = \frac{\partial g}{\partial p_g} + \frac{\partial g}{\partial m} \frac{m^*}{\partial p_g} = \frac{2}{3p_g} + \frac{2}{3p_g} \times 400
\]
\[\frac{\partial g^s}{\partial p_g} = -\frac{22400}{3\cdot 4^2} + \frac{2}{3\cdot 4} \]

\[\frac{\partial g^s}{\partial p_g} = -100 + 67 = -33 \]

Since Aisha has an endowment of \(g = 600 \), the total derivative of her Marshallian demand function is

\[\frac{dg}{dp_g} = \frac{\partial g}{\partial p_g} + \frac{\partial g}{\partial m} 600 = 0 \]

(recall we found this was equal to 0 in part a.) Combining this with the Slutsky compensated demand gives

\[\frac{dg}{dp_g} = \frac{\partial g^s}{\partial p_g} - \frac{\partial g}{\partial m^*} + \frac{\partial g}{\partial m} 600 \]

Filling in from above we find

\[0 = -33 - 67 + \frac{2}{3\cdot 4} 600 = -33 - 67 + 100 \]

Thus the substitution effect is \(-33\), the ordinary income effect is \(-67\), and the endowment income effect exactly offsets these at \(+100\).

6. **Nurses a.**

(a) The new Marshallian demand is \(R(25, 250) \). Note how both the price and the income have risen; this is why we need the Slutsky equation to separate out what is happening. The Slutsky compensated demand at the new wage is

\[R^s(25) = R(25, 25R^* + C^*) \]

(b) Because this is an endowment problem, we start by taking the derivative of Marshallian demand.

\[\frac{dR}{dw} = \frac{\partial R}{\partial w} + \frac{\partial R}{\partial m} 10 \]
Next, we take the derivative of Slutsky compensated demand and rearrange it:

\[
\frac{\partial R^s}{\partial w} = \frac{\partial R}{\partial w} + \frac{\partial R}{\partial m} R^* \quad \frac{\partial R}{\partial w} = \frac{\partial R^s}{\partial w} - \frac{\partial R}{\partial m} R^*
\]

Finally, we can substitute the last equation into the derivative of Marshallian demand to get the three effects:

\[
\frac{dR}{dw} = \frac{\partial R^s}{\partial w} - \frac{\partial R}{\partial m} R^* + \frac{\partial R}{\partial m} 10
\]

On the right hand side, the first term must be negative since it is a compensated demand curve. The derivative \(\frac{\partial R}{\partial m}\) is the slope of the Engel curve for leisure – one would assume that it is positive. Thus, the last two terms, the ordinary plus endowment income effect will total up to something positive multiplied by \(10 - R^*\), the amount of work the nurses choose to do.

We cannot be sure whether the nurses will work more hours, but we can say that they are less likely to work more if (i) they regard leisure as more of a luxury good and (ii) they already were working most of the possible hours (\(R^*\) close to 0).

(c) The new Marshallian demand would just add the $75 to income: \(R(w, 10w + 75)\). The new Slutsky compensated demand would compensate to \(R(w, wR^* + C^* + 75)\).

(d) Since this is a pure income change, we only need to know the slope of the Engel curve. The effect of the change would be:

\[
\frac{\partial R}{\partial m} 75
\]

Since leisure is a normal good, this just makes it even more likely that they will take additional leisure. So the bonus is a terrible idea!
7. Relax a.

(a) The labor supply curve is

\[L^S = 16 - R(w, p, 16w + 12) = 16 - 4w - 3 - p - \frac{1}{w} \]

The derivative is \(\frac{\partial L^S}{\partial w} = -\frac{\partial R}{\partial w} = -4 + w^{-2} \). This is negative if:

\[-4 + w^{-2} < 0 \]
\[4w^2 > 1 \]
\[w^2 > \frac{1}{4} \]
\[w > 0.5 \]

So the supply of labor slopes up for wages less than 0.5, and down for higher wages. Thus labor supply bends backward above 0.5.

(b) The Slutsky compensated demand is

\[R^S(w) = R(w, p, pC^* + wR^*) = \frac{1}{4}(pC^* + wR^*) + p + \frac{1}{w} \]

From this we can derive the Slutsky equation and substitute in the endowment effect. The result is

\[\frac{dR}{dw} = \frac{dR^S}{dw} + \frac{\partial R}{\partial m}(16 - R^*) \]
\[4 - w^{-2} = 0.25R^* - w^{-2} + 0.25 \cdot (16 - R^*) \]

(c) Note that \(R^* = 5.4 + 1 + 1.67 = 8.067 \). Then:

\[4 - 2.78 = 2.017 - 2.78 + 0.25(7.933) \]
\[1.22 = -0.763 + 1.98 \]

(d) The wage is the price of leisure, so as the wage rises, leisure becomes more expensive, and the consumer “buys” less of it
due to the substitution effect. However, leisure is also a normal good, meaning it has a positive income elasticity. When the wage rises, the consumer's endowment of hours is worth more, giving it higher income.

The higher income causes the consumer to buy more of all normal goods, including leisure. At a high enough wage, the endowment income effect becomes large enough to outweigh the ordinary income effect and the substitution effect, so the consumer buys more leisure. Thus, the consumer's supply of labor falls, and the labor supply curve bends back.