Note: The arrows are made from a hyphen followed by a greater than symbol.
Also, don’t forget that you need to hold down shift while you press enter to get the output.

\textbf{In[3]}: \texttt{ContourPlot3D[x + y == z,}
\hspace{1em} \texttt{{x, -1, 1}, {y, -1, 1}, {z, -1, 1}]}

\textbf{Out[3]}
In[2]:= ContourPlot3D[x + y == z, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True, ViewPoint -> {2, 1, 1}]

Out[2]=
In[4]:= \textbf{ContourPlot3D}\left[\{x + y == z, x == 0, y == 0, z == 0\},
\{x, \text{-1, 1}\}, \{y, \text{-1, 1}\}, \{z, \text{-1, 1}\}, \text{Axes} \rightarrow \text{True},
\text{ContourStyle} \rightarrow \{\text{Red, Blue, Yellow, Green}\},
\text{ViewPoint} \rightarrow \{2, 1, 1\}\right]
ContourPlot3D[y == x^2, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True, ViewPoint -> {2, 1, 1}]
In[5]:= ContourPlot3D[{y == x^2, x == 0, y == 0, z == 0},
{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True,
ContourStyle -> {Red, Blue, Yellow, Green},
ViewPoint -> {2, 1, 1}]
In[6]:= ContourPlot3D[{z == y^2, x == 0, y == 0, z == 0},
{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True,
ContourStyle -> {Red, Blue, Yellow, Green},
ViewPoint -> {2, 1, 1}]

Out[6]=

LecturePlots9_10.nb
In[7]:= ContourPlot3D[{x^2 + y^2 == 1, x == 0, y == 0, z == 0}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True, ContourStyle -> {Red, Blue, Yellow, Green}, ViewPoint -> {2, 1, 1}]
In[8]:= ContourPlot3D[{x^2 + y^2 == z, x == 0, y == 0, z == 0}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True, ContourStyle -> {Red, Blue, Yellow, Green}, ViewPoint -> {2, 1, 1}]
In[9]= ContourPlot3D[{x^2 + y^2 + z^2 == 1, x == 0, y == 0, z == 0}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Axes -> True, ContourStyle -> {Red, Blue, Yellow, Green}, ViewPoint -> {2, 1, 1}]