PROJECT 4: THE DOUBLE-DELTA MOVE AND S-EQUIVALENCE

1. Part I: Required

Two square matrices V and W are unimodular congruent if there is a matrix P such that $W = P^T V P$ where $\det P = \pm 1$.

Problem 1. Give an example of two matrices that are unimodular congruent.

Given, a square matrix V, W is a row enlargement of V (and V is a row reduction of W) if

$$W = \begin{pmatrix} 0 & 0 & 0 \\ 1 & x & u \\ 0 & v & V \end{pmatrix},$$

where x is an integer, u is a row vector and v is a column vector.

Problem 2. Give an example of square matrices V and W where W is a row enlargement of V.

Given, a square matrix V, W is a column enlargement of V (and V is a column reduction of W) if

$$W = \begin{pmatrix} 0 & 1 & 0 \\ 0 & x & u \\ 0 & v & V \end{pmatrix},$$

where x is an integer, u is a row vector and v is a column vector.

Problem 3. Give an example of square matrices V and W where W is a column enlargement of V.

Two square matrices with integer entries are S-equivalent if they are related by a sequence of unimodular congruences, row enlargements, row reductions, column enlargements, and column reductions.

Two knots are S-equivalent if they have S-equivalent Seifert matrices.

Problem 4. Give an example of two S-equivalent knots. You should find their Seifert matrices and show that they are S-equivalent.

2. Part II: Extra Credit

In 2003, Swatee Naik and Ted Stanford showed that two knots are S-equivalent if and only if they are related by a sequence of double-delta moves. (See Figure 1.) Their paper was called “A move on diagrams that generates S-equivalence of knots” and appeared in the Journal of Knot Theory and its Ramifications.

![Figure 1. The double-delta move]
Problem 5. *Give a proof that if two knots are related by a sequence of double-delta moves, then they are S-equivalent. (In other words, prove the easier half of their theorem.)*

It also turns out that two knots are S-equivalent if and only if they have isomorphic Blanchfield linking forms (which I studied in my thesis). There is interest in understanding how Blanchfield linking forms are related to knot Floer homology which can be computed combinatorially from a grid diagram for the knot. Therefore one possible beginning of understanding how the Blanchfield linking form is related to knot Floer homology is to figure out how to define a grid version of the double-delta move.

Problem 6. *Define a grid version of the double-delta move.*