Hermitian Operators

1. Definition: The operator \(A \) is hermitian if

\[
\int_{-\infty}^{+\infty} \phi^* A \psi \, dx = \int_{-\infty}^{+\infty} (A \psi)^* \phi \, dx
\]

where \(\psi \) and \(\phi \) are well-behaved wavefunctions.

2. The operators \(x, p = -i \frac{\partial}{\partial x}, \) and \(H \) are all hermitian, although the proofs are sometimes not trivial. To prove that \(p \) is hermitian requires, for example, integration by parts.

3. Note that the right hand side of eq (1) can be written as \(\int_{-\infty}^{+\infty} (A\psi)^* \phi \, dx \), where it is understood that \(A \) operates only on \(\psi \). That is, hermitian operators can operate on bra’s to the left as well as on kets to the right.

4. If \(A \) is hermitian then \(\langle \psi | A | \phi \rangle = \langle \phi | A | \psi \rangle^\dagger \). If \(A \) is hermitian and the matrix element is real, then \(\langle \psi | A | \phi \rangle = \langle \phi | A | \psi \rangle \).

5. The symbol for hermitian conjugation is a superscript dagger, \(\dagger \), as in, the hermitian conjugate of \(A \) is \(A^\dagger \). \(A = A^\dagger \), means \(A \) is hermitian.

6. The hermitian conjugate of a matrix is a new matrix with elements the complex conjugate of the transposed (reflected across the diagonal) elements of the original matrix.

\[
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & j
\end{pmatrix}^\dagger = \begin{pmatrix}
a^* & d^* & g^* \\
b^* & e^* & h^* \\
c^* & f^* & j^*
\end{pmatrix}
\]

If a matrix is equal to its hermitian conjugate, then that matrix is said to be hermitian. The following is an hermitian matrix,

\[
\begin{pmatrix}
7 & 5i & 6 \\
-5i & 9 & i \\
6 & -i & 47
\end{pmatrix}
\]

7. If we take the hermitian conjugate of operators and wavefunctions, the order is reversed and bras become kets and kets become bras,

\[
\langle n|ABC|m\rangle^\dagger = \langle m|C^\dagger B^\dagger A^\dagger|n\rangle.
\]

8. Hermitian operators have real eigenvalues. This is why \(H \) must be hermitian; energies are real.

9. The Hermitian conjugate of a number is just its complex conjugate. The hermitian conjugate of a real matrix is the transpose of the matrix. Hermitian conjugation is the generalization of complex conjugation to the realm of operators and matrices.