This exam is structured just like our three hour exam which will be closed book and with closed notes. You may refer to your single-sided 8½” × 11” crib sheet. In the actual final exam you will be asked to draw a box around your final answers, where applicable.

Constants

- **mass of the electron** \(m = 9.10939 \times 10^{-28} \text{ g} = 9.10939 \times 10^{-31} \text{ kg} \)
- **charge of the proton** \(e = 4.8032 \times 10^{-10} \text{ g}^{1/2} \text{ cm}^{3/2} \text{ s}^{-1} = 1.602177 \times 10^{-19} \text{ C} \)
- **Planck’s constant / \(\pi \)** \(h = 1.05457 \times 10^{-27} \text{ g cm}^{2} \text{ s}^{-1} = 1.05457 \times 10^{-34} \text{ J s} \)
- **Bohr radius** \(a_0 = 5.291772 \times 10^{-9} \text{ cm} = 5.291772 \times 10^{-11} \text{ m} \)

Formulae

The energies and wavefunctions for a particle of mass \(m \), in a one-dimensional box of length \(a \), and with infinitely high walls are \(E_n = \frac{n^2 \hbar^2}{8ma^2} \), and \(\psi_n(x) = \frac{2}{a} \sqrt{\frac{1}{a}} \sin\left(\frac{n\pi x}{a}\right) \), where \(n \) is an integer.

1s wavefunction of hydrogen: \(\psi_{1s}(r, \theta, \phi) = \left(\frac{1}{\pi^{1/2}}\right)\left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0} \)

radial probability function: \(P(r)dr = 4\pi r^2\psi^2(r)dr \)

First order correction to the energy:

If \(H = H^0 + H^{(1)} \), and \(E_n = E_n^0 + E_n^{(1)} \), then \(E_n^{(1)} = <\psi_n^0|H^{(1)}|\psi_n^0> \)

Diagonalizing a 2×2 matrix:

\[
H_{\text{diag}} = U^T H U = \begin{pmatrix}
\cos(\theta) & \sin(\theta) \\
-\sin(\theta) & \cos(\theta)
\end{pmatrix}
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix}
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]

where \(\tan(2\theta) = \frac{2b}{a-c} \), and the columns of \(U \), the unitary matrix on the right, are the new wavefunctions (vectors) in terms of the original vectors. The first column of \(U \) corresponds to the upper left eigenvalue of \(H_{\text{diag}} \).

\[
J^2 |J, L, S> = J(J + 1)\hbar^2 |J, L, S>
\]
\[
L^2 |J, L, S> = L(L + 1)\hbar^2 |J, L, S>
\]
\[
S^2 |J, L, S> = S(S + 1)\hbar^2 |J, L, S>
\]

\[
J_+ |j, m> = [(j + 1) - m(m + 1)]^{1/2} \hbar |j, m + 1>
\]
\[
J_- |j, m> = [(j + 1) - m(m - 1)]^{1/2} \hbar |j, m - 1>
\]

These are general formulae for the raising and lowering operators for angular momentum.
1. A one dimensional box with potential walls of $V = \infty$ at $x = 0$ and at $x = a$ is perturbed as shown in the figure:

The potential is 0 from $x = 0$ to $x = a/2$, and is a small constant, $\hbar^2/(80m a^2)$, from $x = a/2$ to $x = a$. The potential is ∞ for $x \leq 0$ and is ∞ for $x \geq a$. The __________ is the perturbation.

Use first order perturbation theory to calculate the correction that must be added to the zeroth order eigenvalues of the particle in a box with infinite walls and no perturbation inside. Do this in general for all n, where n is the quantum number for the particle in a box. Write down the total energy (zeroth order plus first order correction) in general for all n. [Hint you may refer to the attached integral table].

2. In class and in your homework we showed that for the two electron atom (He), the $S = 0$, $M_S = 0$ coupled state is

$$|S, M_S> = |0, 0> = \frac{1}{\sqrt{2}} [\alpha(1)\beta(2) - \beta(2)\alpha(1)]$$ (1)

where α is the one-electron $s = 1/2$, $m_s = +1/2$, and β is the one-electron $s = 1/2$, $m_s = -1/2$ wavefunction. The numbers in parentheses are the electron number, either electron number 1 or electron number 2.

For the He triplet state, we know that

$$|S, M_S> = |1, +1> = \alpha(1)\alpha(2)$$ (2)

The coupled two-electron spin lowering operator S_z is simply written as the scalar sum of the two one-electron lowering operators s_1 and s_2.

$$S_z = s_1 + s_2.$$ (3)

Use equation (3) on (both sides, middle and right) of equation (2) to generate the correct, normalized, coupled, two-electron wavefunction $|S, M_S> = |1, 0>$ in terms of the one electron α and β functions.
3. The energies of a diatomic molecule were calculated in class from the linear combination of atomic orbitals (LCAO) model and applying the variational principle to find the wavefunctions $|\psi> = c_1|a> + c_2|b>$ that gave the lowest energies after adjusting c_1 and c_2. The $|a>$ and $|b>$ are the atomic orbitals centered on atoms a and b. These energies are (for homonuclear diatomics)

$$E_+ = (\alpha + \beta)/(1 + S)$$ \hspace{1cm} \text{bonding orbital energy} \hspace{1cm} (1)

and

$$E_- = (\alpha - \beta)/(1 - S)$$ \hspace{1cm} \text{antibonding orbital energy} \hspace{1cm} (2)

where $\alpha = <a|H|a> = <b|H|b>$, \hspace{1cm} (3a)

$\beta = <a|H|b> = <b|H|a>$ which is less than zero, and \hspace{1cm} (3b)

the overlap, $S = <a|b> = <b|a>$ is a small, but non-zero, positive number. \hspace{1cm} (3c)

We can obtain (almost) the same results by the simple expedient as setting up the problem as a 2×2 Hamiltonian matrix by assuming $S = 0$ (and therefore, $|a>$ and $|b>$ are orthonormal).

(a) Set up and diagonalize this 2×2 Hamiltonian matrix and obtain the energies of the lowest bonding and antibonding orbitals of a homonuclear diatomic orbital. Assume $S = 0$. Remember, $\beta < 0$.

(b) Using the unitary (orthogonal, really, since they are real) matrix used in your diagonalization of part (a), write down the normalized bonding wavefunction $|\psi_+>$ that corresponds to the energy E_+ that you calculated in (a) in terms of the basis functions $|a>$ and $|b>$. Also, write down the normalized antibonding wavefunction $|\psi_->$ that corresponds to the energy E_- that you calculated in (a) in terms of the basis functions $|a>$ and $|b>$.

4. Diatomic Rotational Spectroscopy

$E = B J(J + 1)$

$B = \hbar^2/(2 I)$ \hspace{1cm} \text{in units of energy}

$I = \mu r^2$

$\mu = m_1 m_2/(m_1 + m_2)$

atomic mass unit (amu) = 1.66054×10^{-24} g = 1.66054×10^{-27} kg

$m(^1\text{H}) = 1.007825$ amu

$m(^35\text{Cl}) = 34.968851$ amu

The spacing between the transitions in the microwave spectrum of $^3\text{H}^35\text{Cl}$ is approximately 6.350×10^{11} Hz (635.0 GHz). Calculate the bond length of HCl. [While this is fundamentally a straight-forward problem, you have to be careful with the units].