4-1. Which of the following candidates for wave functions are normalizable over the indicated intervals?

a. \(e^{-x^2/2} \ (\infty, \infty) \)

b. \(e^{x} \ (0, \infty) \)

c. \(e^{i\theta} \ (0, 2\pi) \)

d. \(\sinh x \ (0, \infty) \)

e. \(xe^{-x} \ (0, \infty) \)

\[\sqrt{a} \]

\[\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} e^{-y^2} dy = \int_{-\infty}^{\infty} e^{-x^2} dx \] normalizable since \(\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \)

\[x \]

\[\int_{0}^{\infty} e^x e^{-2x} dx = \int_{0}^{\infty} e^{-x} dx = \frac{1}{5} e^{-x} \bigg|_{0}^{\infty} = \infty \] not normalizable

\[\sqrt{c} \]

\[\int_{0}^{\frac{\pi}{2}} (e^{i\theta}) e^{i\phi} d\theta = \int_{0}^{\frac{\pi}{2}} e^{i\theta} d\theta = \int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{2} \] normalizable

\[x \]

\[\int_{0}^{\infty} (e^x - e^{-x}) \sinh x \ dx \]

\[\int_{0}^{\infty} \left(\frac{e^x - e^{-x}}{2} \right) \left(\frac{e^x + e^{-x}}{2} \right) dx = \int_{0}^{\infty} \left(e^{2x} + e^{-2x} \right) dx \]

\[\sqrt{e} \]

\[\int_{0}^{\infty} x^2 e^{-x} dx = \frac{2!}{3!} \] (integral table) normalizable.
In this problem, we will prove that the form of the Schrödinger equation imposes the condition that the first derivative of a wave function be continuous. The Schrödinger equation is

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2}[E - V(x)]\psi(x) = 0$$

If we integrate both sides from $a - \epsilon$ to $a + \epsilon$, where a is an arbitrary value of x and ϵ is infinitesimally small, then we have

$$\frac{d\psi}{dx}\bigg|_{x=a+\epsilon} - \frac{d\psi}{dx}\bigg|_{x=a-\epsilon} = \frac{2m}{\hbar^2} \int_{a-\epsilon}^{a+\epsilon} [V(x) - E] \psi(x) dx$$

Now show that $d\psi/dx$ is continuous if $V(x)$ is continuous.

$$\psi(a+\epsilon) = \psi(a-\epsilon) = \psi(a)$$

If V continuous then $V(a+\epsilon) = V(a-\epsilon) = V(a)$

$$= \frac{2m}{\hbar^2} \left[V(a) - E \right] \psi(a) 2\epsilon \to 0 \quad \text{as} \quad \epsilon \to 0$$

$$\frac{d\psi}{dx}\bigg|_{x=a+\epsilon} - \frac{d\psi}{dx}\bigg|_{x=a-\epsilon} = 0 \quad \text{or} \quad \frac{d\psi}{dx} \text{ is continuous}$$

Suppose now that $V(x)$ is not continuous at $x = a$, as in

![Graph of a piecewise-continuous potential function](image)

Show that

$$\frac{d\psi}{dx}\bigg|_{x=a+\epsilon} - \frac{d\psi}{dx}\bigg|_{x=a-\epsilon} = \frac{2m}{\hbar^2} [V_i + V_r - 2E] \psi(a) \epsilon$$

If V is not continuous then RHS of (1)

$$= \frac{2m}{\hbar^2} \int_{a-\epsilon}^{a+\epsilon} [V(x) - E] \psi(x) dx$$

It is easy to think about the two halves separately

$$= \frac{2m}{\hbar^2} \int_{a-\epsilon}^{a} [V(x) - E] \psi(x) dx + \int_{a}^{a+\epsilon} [V(x) - E] \psi(x) dx$$

$$\frac{d\psi}{dx}\bigg|_{x=a+\epsilon} - \frac{d\psi}{dx}\bigg|_{x=a-\epsilon} = \frac{2m}{\hbar^2} \left[(V_i - E) \psi(a) \epsilon + (V_r - E) \psi(a) \epsilon \right]$$

$$= \frac{2m}{\hbar^2} \left[V_i + V_r - 2E \right] \psi(a) \epsilon$$

(Continued)
so that \(\frac{d\psi}{dx} \) is continuous even if \(V(x) \) has a finite discontinuity. What if \(V(x) \) has an infinite discontinuity, as in the problem of a particle in a box? Are the first derivatives of the wave functions continuous at the boundaries of the box?

If \(V(x) \) has an infinite discontinuity, then

\[
\frac{\psi_2}{\psi_1} \left[V_2 + V_1 - \beta \text{E} \right] \psi_1(x) \xrightarrow{\text{as } \beta \to \infty} \text{a constant}
\]

and as \(\beta \to \infty \), the product can go to any number, not necessarily zero.

Thus \(\frac{d\psi}{dx} \bigg|_{a-} - \frac{d\psi}{dx} \bigg|_{a+} \) can be non-zero.

If \(\psi \) can be discontinuous at \(a \) can be spiked (continuously).

4-6. Calculate the values of \(\sigma_v^2 = \langle E^2 \rangle - \langle E \rangle^2 \) for a particle in a box in the state described by

\[
\psi(x) = \left(\frac{630}{a^3} \right)^{1/2} x^2 (a-x)^2, \quad 0 \leq x \leq a
\]

\[
\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}
\]

\[
\sigma_v^2 = \langle E^2 \rangle - \langle E \rangle^2 = \langle \psi | \hat{H}^2 | \psi \rangle - \langle \psi | \hat{H} | \psi \rangle^2
\]

\[
\sigma_v^1 = \frac{6}{a^3} \int_0^a x^2 (a-x)^2 \frac{d}{dx} \left[x^2 (a-x)^2 \right] - \left(\frac{630}{a^3} \right)^{1/2} \int_0^a x^2 (a-x)^2 \left(\frac{x^2}{a^4} \right) \frac{d^2}{dx^2} \left[x^2 (a-x)^2 \right]
\]

\[
\frac{d}{dx} \left[x^2 (a-x)^2 \right] = \frac{d}{dx} \left[(a^2 - 2ax + x^2) \right] = \frac{d}{dx} \left[x^2 - 2ax + a^2 \right]
\]

\[
= 4x^3 - 6ax^2 + 2a^2 x
\]

\[
\frac{d^2}{dx^2} \left[x^2 (a-x)^2 \right] = 12x^2 - 12ax + 2a^2
\]

\[
\frac{d^3}{dx^3} \left[x^2 (a-x)^2 \right] = 24x - 12a
\]

\[
\frac{d^4}{dx^4} \left[x^2 (a-x)^2 \right] = 24
\]
\[\sigma_E^2 = \frac{630}{a^9} \int_0^a x^3 (a-x)^2 \frac{t^4}{y^m} \cdot 2y \, dx \]

\[\left(\frac{630}{a^9} \int_0^a x^2 (a-x) \left(-\frac{t^4}{2m} \right) (12x^2 - 12ax + a^2) \, dx \right)^2 \]

\[\sigma_E^2 = \frac{630}{a^9} 2y \frac{t^4}{y^m} \int_0^a \left(x^4 - 2ax^3 + a^2x^2 \right) \left(12x^2 - 12ax + a^2 \right) \, dx \]

\[\left\{ \frac{630}{a^9} \left(-\frac{t^4}{2m} \right) \int_0^a \left[6x^6 - 12ax^5 + 6a^2x^4 - 4a^3x^3 \right] \, dx \right\}^2 \]

\[\sigma_E^2 = \frac{630}{a^9} 2y \frac{t^4}{y^m} \left(\frac{1}{5} - \frac{2}{y^m} \right) x^5 - \left\{ \frac{630}{a^9} \left(-\frac{t^4}{2m} \right) \left[\frac{12}{7} - 6 + \frac{38}{5} - 4 + \frac{21}{3} \right] a^7 \right\} \]

\[\sigma_E^2 = \frac{630}{a^9} \frac{t^4}{y^m} \left(\frac{1}{5} - \frac{1}{2} + \frac{1}{3} \right) a^5 - \left\{ \frac{630}{a^9} \left(-\frac{t^4}{2m} \right) \left[\frac{12}{7} - 6 + \frac{38}{5} - 4 + \frac{21}{3} \right] a^7 \right\} \]

\[\sigma_E^2 = 1.26 \frac{t^4}{a^9 m^2} - \left(\frac{630}{a^9} \frac{t^4}{y^m} - \frac{(a^2)}{4 (105)^2} \right) \]

\[\sigma_E^2 = 1.26 \frac{t^4}{a^9 m^2} - \frac{36}{a^9 m^2} \]

\[\sigma_E^2 = 90 \frac{t^4}{a^9 m^2} \]
Problem 4-6

In[1]:= \(\psi = \sqrt{\left\{(630 / a^9) \right\} x^2 (a - x)^2} \)

Out[1]= \(3 \sqrt{70} \left(\frac{1}{a^9} \right) (a - x)^2 x^2 \)

In[2]:= AveESq = \(\int_0^a \psi \left(-\frac{h^2}{2 \text{ m}} \right)^2 * D[\psi, \{x, 4\}] \, dx \)

Out[2]= \(\frac{126 h^4}{a^4 \text{ m}^2} \)

In[3]:= SqAveE = \(\left(\int_0^a \psi \left(-\frac{h^2}{2 \text{ m}} \right) * D[\psi, \{x, 2\}] \, dx \right)^2 \)

Out[3]= \(\frac{36 h^4}{a^4 \text{ m}^2} \)

In[4]:= \(\sigma \text{SqE} = \text{AveESq} - \text{SqAveE} \)

Out[4]= \(\frac{90 h^4}{a^4 \text{ m}^2} \)
4-14. Determine whether or not the following pairs of operators commute.

<table>
<thead>
<tr>
<th>Õ</th>
<th>Ô</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (\frac{d}{dx})</td>
<td>(\frac{d^2}{dx^2} + 2 \frac{d}{dx})</td>
</tr>
<tr>
<td>(b) (x)</td>
<td>(\frac{d}{dx})</td>
</tr>
<tr>
<td>(c) SQR</td>
<td>SQRT</td>
</tr>
<tr>
<td>(d) (x^2 \frac{d}{dx})</td>
<td>(\frac{d^2}{dx^2})</td>
</tr>
</tbody>
</table>

\[a) \quad \frac{d}{dx} \left(\frac{d^2}{dx^2} + 2 \frac{d}{dx} \right) f(x) - \left(\frac{d^2}{dx^2} + 2 \frac{d}{dx} \right) \frac{d}{dx} f(x) = 0 \quad \text{Commutes} \]

\[b) \quad \left(x^2 \frac{d}{dx} - \frac{d}{dx} x \right) f(x) = x \frac{df}{dx} - \frac{df}{dx} x f - x \frac{df}{dx} - x \frac{df}{dx} - f \neq 0 \quad \text{Does not commute} \]

\[c) \quad (SQR \cdot SQRT - SQRT \cdot SQR) f = \]

\[(SQR \sqrt{f} - SQRT f^2) = f - f = 0 \quad \text{Commutes if } f \text{ is real and positive} \]

\[d) \quad \left(x^2 \frac{d}{dx} - \frac{d}{dx} x \right) f(x) \]

\[= \left(x^2 \frac{d^3 f}{dx^3} - \frac{d}{dx} x \frac{d^2 f}{dx^2} \right) \]

\[= \left(x^2 \frac{d^3 f}{dx^3} - \frac{d}{dx} x \frac{d^2 f}{dx^2} - x \frac{d^2 f}{dx^2} - x^2 \frac{df}{dx} \right) - \left(x \frac{d^2 f}{dx^2} + x \frac{df}{dx} \right) \]

\[= \left(x^2 \frac{d^3 f}{dx^3} - 2 x^2 \frac{df}{dx} - x \frac{d^2 f}{dx^2} - x^2 \frac{df}{dx} - x^2 \frac{df}{dx} \right) \neq 0 \quad \text{Does not commute} \]
In ordinary algebra, \((P + Q)(P - Q) = P^2 - Q^2\). Expand \((\hat{P} + \hat{Q})(\hat{P} - \hat{Q})\). Under what conditions do we find the same result as in the case of ordinary algebra?

\[
(\hat{P} + \hat{Q})(\hat{P} - \hat{Q}) = \hat{P}^2 - \hat{P}\hat{Q} + \hat{Q}\hat{P} - \hat{Q}^2
\]

Same as "ordinary algebra" then \(\hat{P} + \hat{Q}\) commute i.e. \(\hat{P}\hat{Q} - \hat{Q}\hat{P} = 0\) or \([\hat{P}, \hat{Q}] = 0\).

Referring to Table 4.1 for the operator expressions for angular momentum, show that

\[
[L_x, \hat{L}_y] = i\hbar \hat{L}_z
\]

\[
[L_y, \hat{L}_z] = i\hbar \hat{L}_x
\]

and

\[
[L_z, \hat{L}_x] = i\hbar \hat{L}_y
\]

(Do you see a pattern here to help remember these commutation relations?) What do these expressions say about the ability to measure the components of angular momentum simultaneously?
\[
\begin{align*}
\text{Theorem: } [a, b, c] &= \alpha \left[b, c \right] + [a, c] b & \text{add + subtract} \\
[b, c] &= \alpha \left[b, c \right] + [a, c] b & \text{add + subtract}
\end{align*}
\]

\[
\begin{align*}
\text{proof: } [a, b, c] &= abc - cab = abc - ac b + abc - cab \\
&= a(bc - cb) + (ac - ca) b \\
&= a \left[b, c \right] + [a, c] b
\end{align*}
\]

\[
\begin{align*}
\text{Theorems } [a, b, c] &= b \left[a, c \right] + [a, b] c \\
\text{proof: } [a, b, c] &= abc - bca \\
&= b \left[a, c \right] + [a, b] c = bac - bca + abc - bca = abc - bca
\end{align*}
\]

\[
\begin{align*}
\text{thus } [a, b, d] &= a \left[b, c, d \right] + [a, c, d] b \\
&= a \left[b, d \right] + \left[b, c, d \right] + (c \left[a, d \right] + [a, c] d) b \\
&= ac \left[b, d \right] + a \left[b, c \right] d + c \left[a, d \right] b + c \left[a, c \right] d b
\end{align*}
\]

\[
\begin{align*}
\text{let us work through in sequence.} \\
\text{Theorem } (a+b) \left[c, d \right] &= \left[a, c \right] + \left[b, c \right] \\
\text{check } (a+b)c - c(a+b) &= ac - ca + b = cb \\
a + b c - c(\alpha + b) &= ac - ca + bc - cb \\
\end{align*}
\]

\[
\begin{align*}
\text{OK, now } [L_y, L_z] &= \left[z p_x - x p_y, x p_y - y p_x \right] \\
&= \left[z p_x, x p_y \right] - \left[z p_x, y p_x \right] - \left[x p_y, x p_y \right] + \left[x p_y, y p_x \right] \\
&= z \left[x p_y, p_x \right] + \left[z, x p_y \right] p_x + x \left[z, y p_x \right] + \left[x, y p_x \right] p_x \\
&= z x \left[p_y, p_x \right] + z \left[p_x, x \right] p_y + x \left[z, y p_x \right] + y \left[x, p_x \right] p_z + z \left[z, x \right] p_x p_z \\
&= z (-i k) p_y + y (i k) p_z \\
&= + i k (y p_z - z p_y) = + i k L_x
\end{align*}
\]

\[
[\chi_y, L_z] = + i k L_x
\]
4-17 (continued)

Likewise \([L_z, L_y] = i\hbar L_x \)

Cyclic order

\[x, y, z, \gamma \]

Since the angular momentum component operators do not commute, no two components can commute simultaneously.

\(4-18 \) Defining

\[L^2 = L_x^2 + L_y^2 + L_z^2 \]

show that \(L^2 \) commutes with each component separately. What does this result tell you about the ability to measure the square of the total angular momentum and its components simultaneously?

\[
[L^2, L_x] = [L_x^2 + L_y^2 + L_z^2, L_x] = [L_x^2, L_x] + [L_y^2, L_x] + [L_z^2, L_x] \\
= L_y [L_y, L_x] + L_z [L_z, L_x] + L_z [L_z, L_x] + L_z [L_z, L_x] L_z \\
= L_y (-i\hbar L_z) + L_z (+i\hbar L_y) + L_z (+i\hbar L_y) L_z \\
= +i\hbar (-L_y L_z - L_z L_y + L_z L_y + L_y L_z) = 0 \quad \text{G.E.D.}
\]

The long way:

\[
[L^2, L_x] = (L_x^2 + L_y^2 + L_z^2) L_x - L_x (L_x^2 + L_y^2 + L_z^2) \\
= L_x^3 + L_y^2 L_x + L_z^2 L_x - L_y^2 L_x - L_z^2 L_x \\
= i\hbar^2 \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} \right) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) \\
+ i\hbar^2 \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial z} \right) \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial z} \right) \\
- i\hbar^2 \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial x} \right) \\
- i\hbar^2 \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)
\]
3. assigned 9/17/02
Show that if $\psi_1(x)$ satisfies the Schrödinger equation for some potential $V(x)$ and that $\psi_2(x)$ is also a solution to the same Schrödinger equation with the same eigenvalue, then $\psi_3(x) = a\psi_1(x) + b\psi_2(x)$ is also a solution where a and b are arbitrary constants.

$$\mathcal{H}\psi_1(x) = E_0\psi_1(x)$$
$$\mathcal{H}\psi_2(x) = E_0\psi_2(x)$$
$$\mathcal{H}(a\psi_1 + b\psi_2) = a\mathcal{H}\psi_1 + b\mathcal{H}\psi_2 = aE_0\psi_1 + bE_0\psi_2 = E_0(a\psi_1 + b\psi_2)$$

$$a\mathcal{H}\psi_3 = E_0\psi_3 \quad \text{Q.E.D.}$$

4. assigned 9/24/02
We will be using commutators of operators quite a bit in this course. The following are two simple theorems involving commutators which will prove quite useful in doing some of the regular HW problems. First some notation.

Assume that a, b, and c are operators. The notation $[a, b]$ is read the commutator of the operators a and b and is defined as $[a, b] = ab - ba$.

So, for example

$$[x, p_x]f(x) = (xp_x - p_xx)f(x) = xp_xf(x) - p_xxf(x) = x(-ih\partial/\partial_x)f(x) - (-ih\partial/\partial_x)xf(x) = ihf(x)$$

or $[x, p_x] = ih$

Here are the theorems I am asking you to prove:

a) prove: $[ab, c] = a[b, c] + [a, c]b$

$$[ab, c] = abc - cab \quad \text{add subtract} \quad abc :$$
$$[ab, c] = abc - abc + abc - cab$$
$$[ab, c] = a(bc - cb) + (ac - ca)b$$
$$[ab, c] = a[b, c] + [a, c]b \quad \text{Q.E.D}$$

and b) prove: $[a, bc] = b[a, c] + [a, b]c$

$$[a, bc] = abc - bca \quad \text{add subtract} \quad bac :$$
$$[a, bc] = abc - bac + bac - bca$$
$$[a, bc] = (ab - ba)c + b(ac - ca)$$
$$[a, bc] = b[a, c] + [a, b]c \quad \text{Q.E.D}$$
With these two simple theorems, more complicated combinations, such as $[a b, c d]$, can be easily expanded.

c) Use theorem (a) to show that $[x^2, p_x] = 2i\hbar x$

\[
 [a b, c d] = a [b, c d] + [a, c d] b = a 0 [b, d] + a [b, c] d + c [a, d] b + [a, c] d b
\]

\[
 [x^2, p_x] = x [c, p_x] + [x, p_x] x = x (i \hbar) + (i \hbar) x = 2i \hbar x
\]

5. assigned 9/24/02

Two operators, A and B, commute. Prove that if $|\psi\rangle$ is an eigenfunction of A with eigenvalue a, then $B|\psi\rangle$ is also an eigenfunction of A with eigenvalue a.

\[
 [A, B] = 0
\]

\[
 A |\psi\rangle = a |\psi\rangle
\]

\[
 (AB - BA) |\psi\rangle = 0 \Rightarrow AB |\psi\rangle = BA |\psi\rangle
\]

\[
 AB |\psi\rangle = a B |\psi\rangle
\]

\[
 A (B |\psi\rangle) = a (B |\psi\rangle)
\]

If we call $B |\psi\rangle = |\psi\rangle$

\[
 A |\psi\rangle = a |\psi\rangle \quad QED
\]